If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35u^2+80u=0
a = 35; b = 80; c = 0;
Δ = b2-4ac
Δ = 802-4·35·0
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-80}{2*35}=\frac{-160}{70} =-2+2/7 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+80}{2*35}=\frac{0}{70} =0 $
| 7x+-2=4x+9 | | t+68=2 | | 10z-8=9z | | -11=-18-7/2w | | 10v^2-240v=0 | | 7T-4=10t×14 | | 10x-4+x-14=180 | | 5y-12=4y+6 | | 13b-8=-b-14 | | 1/3x-1/4=36+x | | -8(3-x)=4/5(x-33) | | 40k^2-7k=0 | | 11+15v=-7+3v | | 9g-6g=6 | | 4b=b+12 | | 13=r/98 | | 6y+2y-8y+4y+1=7 | | -32-12x=112 | | 128=4^3x | | 8(3-x)=4/5(x+33) | | U+12=3u | | 94=23+m+14 | | 6(8g(2)+2)+45=153 | | 5(w+1)=5 | | 6f^2-3/2f+1/12=0 | | -7x-7=28x-7(5x-7) | | 32z^2+80z+50=0 | | 10x-5x+x-x+x+1=7 | | 8y^2-2y=1 | | 4z^2+19z-12=0 | | 14v=27+5v | | 2v+15=19 |